

KIBA PROJECT OUTCOMES FROM RESEARCH-INDUSTRY COLLABORATION

Sarah Berger Intermodal Terminals Specialist INFORM GmbH

The Challenge

Every day, hundreds of load units must find their place on limited train slots across a changing network.

The Challenge

- Complex network

 Many routes/trains/terminals, data gaps
- Market pressure
 Road competition, cost focus
- Volatile demand
 Short-term changes, no predictability
- Capacity limits
 Train length, wagons, yard space

- Manual handling
 Human errors, inefficiency
- Unpredictable events
 Congestion/disruptions
- Safety risks
 Incorrect loading, overloads

The Solution

Utilizing mathematical optimization, Al and Machine Learning

Solution development with the KIBA project:

Artificial Intelligence and Discrete Loading Optimization Models for Enhanced Utilization in Combined Transport

Künstliche Intelligenz und diskrete Beladeoptimierungsmodelle zur Auslastungssteigerung im Kombinierten Verkehr

INFORM Worldwide

Optimization since 1969

HQ in **Aachen**, **Germany**

7 subsidiaries on 4 continents

1200+ employees and growing

1000+ customers worldwide

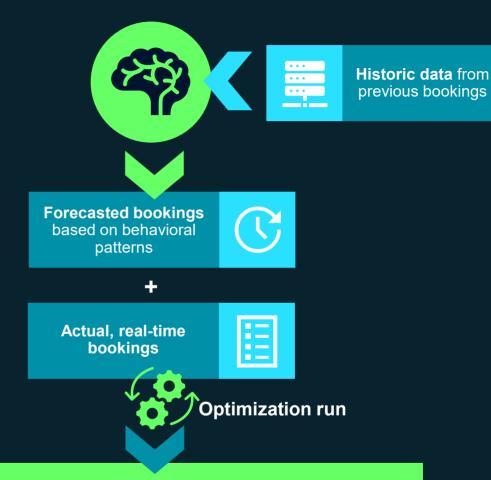
Al-powered solutions for various markets

Why?

Optimize distribution of load units across the European rail network

Maximize network utilization (max. transported load units)

Increase the attractiveness of rail freight (min. transport time and cost)



Reduce re-handlings, delays, and congestion at hubs

Forecast and plan with the help of Al to enhance efficiency and resilience

How?

Optimized allocation of load units to train journeys

Use Cases

Scenario 1

- An employee cannot have the overview over all real-time data (bookings, routes, restrictions, etc.).
- The optimization module can.
 It also has the ability to forecast.

Scenario 2

- An unforeseen track closure occurs, and a train is canceled.
- The train must now take a different route, and the load units will no longer arrive at their destination on time.
- The optimization can reallocate load units on train journeys.

Optimized Train Load Planning

Optimized Train Load Planning

Why?

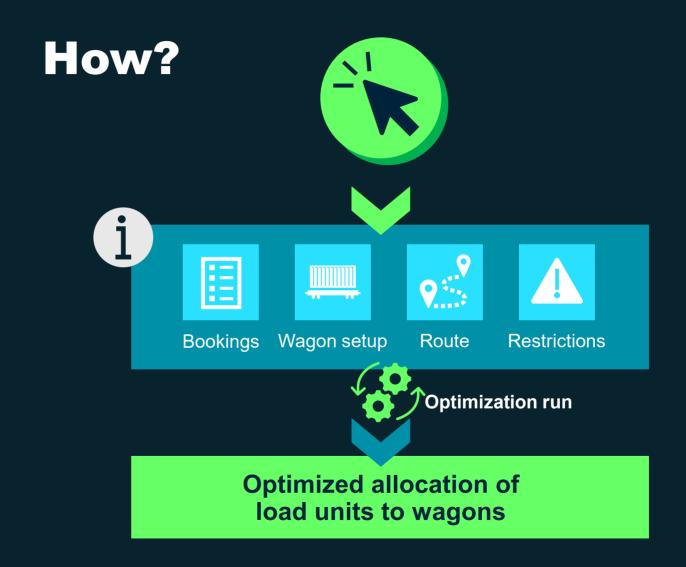
Decisions at the push of a button

Optimize allocation of load units to wagons

Shorten crane travel distances, reduce crane handlings

Minimize handling time per load unit

Comply with safety and hazardous goods regulations



Avoid unnecessary re-handlings

Maximize train utilization with existing resources

Optimized Train Load Planning

Optimized Train Load Planning

Use Cases

Scenario 1

- A truck arrives on short-notice.
- Its load unit is high-priority.
- You need to update the train load plan in real-time.

Scenario 2

- The real wagon setup differs from the communicated wagon setup.
- You need to rearrange the train load in real-time.

Scenario 3

- A company operates multiple terminals.
- You can save time and resources by centralizing the train load planning across locations.

Added Value

Thanks for listening!

Feel free to reach out if you have any open questions!

Sarah Berger

Email: sarah.berger@inform-software.com

Or add me on LinkedIn!

